Chapter 5

Discrete Probability Distributions

Warmup p. 188 \#2

- The mean pulse rate for adult women is 77.5 bpm , with a standard deviation of 11.6 bpm . Using the range rule of thumb, would a pulse rate of 100 beats per minute be considered unusual? Explain.
- For the pulse rates of adult women, is a pulse rate of 50 bpm unusual? Explain.
- For a couple having eight children, is it unlikely to have all girls?
- For a couple having three children, is it unlikely to have all girls?

Chapter 4 review \#16

- Suppose an athletic team is playing an upcoming three games series. They have a 60% chance of winning their first game, a 75% chance of winning their second, and a 40% chance of winning the third game.
a) Probability that they win all three games
b) Probability that they win at most 1 game
c) Probability that they win at least one game

Distribution

- Frequency Distribution
- Histogram
- Probability Distribution
- Probability Histogram

Definitions

- Random Variable - a variable that has a single numerical value for each outcome of a procedure.
- Probability Distribution - gives the probability for each value of the random variable. Usually expressed as a table, graph, or formula.
- Discrete random variable - collection of values that is finite or countable
- Continuous random variable - infinitely many values, the collection is not countable (not for chapter 5)

Probability Distribution

1. There is a numerical random variable x and its values are associated with corresponding probabilities.
2. $\sum P(x)=1$
3. $0 \leq P(x) \leq 1$

Probability Distributions for number of girls in 2 births

Number of girls \mathbf{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	0.25
1	0.5
2	0.25

Meets the criteria to be a probability distribution

Poll: Subjects asked if marijuana should be legal

Responses	$\boldsymbol{P}(\boldsymbol{x})$
Yes	0.41
No	0.52
Don't Know	0.07

Does not meet the criteria of a probability distribution

Executives asked when Job applicants should discuss salary

Number of interviews	$\boldsymbol{P}(\boldsymbol{x})$
1	0.30
2	0.26
3	0.10

Does not meet the criteria of a probability distribution

Probability Distributions for number of
 Possible outcomes girls in 4 births

$b b b b$	Number of girls x	$P(x)$
gbbb	0	
$b g b b$	0	
bbgb	1	
bbbg	2	
$g g b b$ bbgg	3	
gbgb bggb		
$g b b g ~ b g b g$	4	
$g g g b$		
$g g b g$		
gbgg		
bggg		

Probability Distributions for number of
 Possible outcomes girls in 4 births

bbbb	Number of girls x	$P(x)$
gbbb	0	1
bgbb	0	$\frac{1}{16}$
$b b g b$	1	$\frac{4}{16}$ or $\frac{1}{4}$
$b b b g$		
ggbb bbgg	2	$\frac{6}{16}$
$g b g b$ bggb	3	$\frac{4}{16}$ or $\frac{1}{4}$
$g b b g ~ b g b g ~$		$\overline{16}$ or $\frac{1}{4}$
$g g g b$	4	$\frac{1}{16}$
ggbg		
gbgg		
bggg		
$g g g g$		

Probability Distributions for number of
 Possible outcomes girls in 4 births

Parameters of a Probability Distribution

- Mean

$$
\mu=\sum[x \cdot P(x)]
$$

- Variance 1

$$
\sigma^{2}=\sum\left[(x-\mu)^{2} \cdot P(x)\right]
$$

- Variance 2

$$
\sigma^{2}=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}
$$

- Standard Deviation - square root of variance

Probability Distributions for number of girls in 4 births

Number of girls \mathbf{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	.0625
1	.25
2	.375
3	.25
4	.0625

$$
\begin{aligned}
& \mu=0 \cdot .0625+1 \cdot .25+2 \cdot .375+3 \cdot .25+4 \cdot .0625 \\
& \boldsymbol{\mu}=\mathbf{2}
\end{aligned}
$$

Probability Distributions for number of girls in 4 births

Number of girls \boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	.0625
1	.25
2	.375
3	.25
4	.0625

$$
\begin{gathered}
v=(0-2)^{2} \cdot .0625+(1-2)^{2} \cdot .25+(2-2)^{2} \cdot .375 \\
+(3-2)^{2} \cdot .25+(4-2)^{2} \cdot .0625
\end{gathered}
$$

$$
\begin{aligned}
& v=\mathbf{1} \\
& \boldsymbol{\sigma}=\mathbf{1}
\end{aligned}
$$

Probability Distributions for number of girls in 4 births

Number of girls \mathbf{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	.0625
1	.25
2	.375
3	.25
4	.0625

$$
v=\left[0^{2} \cdot .0625+1^{2} \cdot .25+\underset{-2^{2}}{2^{2} \cdot .375}+3^{2} \cdot .25+4^{2} \cdot .0625\right]
$$

$$
\begin{aligned}
& v=\mathbf{1} \\
& \boldsymbol{\sigma}=\mathbf{1}
\end{aligned}
$$

Probability Distributions an athletic team playing a 3 game series

Chances of winning
Game 1 - 60\%
Game 2 - 75\%
Game 3-40\%
$P(w w w)=.18$
$P(\bar{w} \bar{w} \bar{w})=.06$
$P(w \bar{w} \bar{w})=.09$
$P(\bar{w} w \bar{w})=.18$
$P(\bar{w} \bar{w} w)=.04$
$P(\bar{w} w w)=.12$
$P(w \bar{w} w)=.06$
$P(w w \bar{w})=.27$

Number of wins	$\boldsymbol{P}(\boldsymbol{x})$
0	.06
1	.31
2	.45
3	.18

Probability Distributions an athletic team playing a 3 game series

Chances of winning
Game 1-60\%
Game 2-75\%
Game 3-40\%

Number of wins	$\boldsymbol{P}(\boldsymbol{x})$
0	.06
1	.31
2	.45
3	.18

$\mu=0 \cdot .06+1 \cdot .31+2 \cdot .45+3 \cdot .18$
$\mu=1.75$

Probability Distributions an athletic team playing a 3 game series

```
Chances of winning
Game 1-60%
Game 2-75%
Game 3-40%
\begin{tabular}{|c|c|}
\hline Number of wins & \(\boldsymbol{P}(\boldsymbol{x})\) \\
\hline 0 & .06 \\
\hline 1 & .31 \\
\hline 2 & .45 \\
\hline 3 & .18 \\
\hline
\end{tabular}
v=[02..06+12..31+2 + 2..45 + 3' 2..18]-1.75'
v=0.6675
\sigma=0.817
```


Expected Value

- Note:Theoretical probability v. Experimental
- The use of μ in place of \bar{x}
- The use of σ in place of S
- E is the expected value and it is the mean value of the outcomes.

5-2 Homework

 -p206 \#5-11, 15-18
Flipping Coins

- From section 4-2
- Find the probability that when you flip a coin 1000 times, you will get exactly 500 heads
- Find the probability that when you flip a coin 1000 times, you will get exactly 520 heads
- Find the probability that when you flip a coin 1000 times, you will get exactly 480 heads
- Find the probability that when you flip a coin 1000 times, you will get more than 520 heads
- Find the probability that when you flip a coin 1000 times, you will get exactly 500 heads

Arrange HHTTHTHHTHTHH.... HHTH with 500 heads

1000!

$\overline{500!500!}$

Sample Space 2^{1000}
≈ 0.0252

- Find the probability that when you flip a coin 1000 times, you will get exactly 520 heads

Arrange HHTTHTHHTHTHH....HHTH with 520 heads

1000!

$$
\overline{520!480!}
$$

Sample Space 2^{1000}
≈ 0.0113

- Find the probability that when you flip a coin 1000 times, you will get exactly 480 heads

Arrange HHTTHTHHTHTHH....HHTH with 480 heads

$$
\frac{1000!}{480!520!}
$$

Sample Space 2^{1000}
≈ 0.0113

- Find the probability that when you flip a coin 1000 times, you will get more than 520 heads

$$
\begin{aligned}
& P(520)=0.0113 \\
& P(521)=0.0104 \\
& P(522)=0.00959 \\
& P(523)=0.00876 \\
& P(524)=0.00798 \\
& \cdots \\
& P(1000)=0+
\end{aligned}
$$

$=\operatorname{COMBIN}(1000, G 2) / 2^{1000}$

G	H
x	$\mathrm{p}(\mathrm{x})$
521	0.010448506
522	0.009587805
523	0.008762851
524	0.00797687
525	0.007232362
526	0.006531125
527	0.005874295
528	0.005262389
529	0.004695364
530	0.004172673
531	0.003693326
532	0.003255959
533	0.00285889
534	0.002500191
535	0.002177736
536	0.001889267
537	0.00163244
538	0.001404869
539	0.001204173
540	0.001028007
541	0.000874091
542	0.000740236
543	0.000624361
544	0.000524509
545	0.000438855
546	0.000365713
547	0.000303535

979	$1.4785 \mathrm{E}-258$
980	3.1683E-260
981	$6.4593 \mathrm{E}-262$
982	$1.2498 \mathrm{E}-263$
983	2.2885E-265
984	3.9536E-267
985	$6.4222 \mathrm{E}-269$
986	$9.77 \mathrm{E}-271$
987	$1.3858 \mathrm{E}-272$
988	$1.8234 \mathrm{E}-274$
989	$2.2125 \mathrm{E}-276$
990	2.4583E-278
991	2.4806E-280
992	$2.2506 \mathrm{E}-282$
993	1.8132E-284
994	$1.2769 \mathrm{E}-286$
995	7.6997E-289
996	3.8653E-291
997	$1.5508 \mathrm{E}-293$
998	4.6617E-296
999	$9.3326 \mathrm{E}-299$
1000	923265202
	0.097383164

5.2 Homework (part 2)

P208 \#12-14, 19-22

Chapter 5 Section 3

BINOMIAL PROBABILITY DISTRIBUTIONS

BINOMIAL PROBABILITY DISTRIBUTIONS

* The procedure has a fixed number of trials.
* The trials must be independent.
x Each trial must have all outcomes classified into two categories (success and failure).
The probability of success remains the same in each trial.

FAMILY OF 8 CHILDREN

* $x=$ number of girls
$\times P(x)$ is the probability of having x girls
* $n=$ number of trials
$+n=8$
$P(S)=$ probability of succes on one trial
$+P(S)=.5$
$P(F)=$ probability of failure on one trial
$+P(F)=.5$

FAMILY OF 8 CHILDREN

$\times P(3)$ is the probability of 3 girls

* $P(3)=\frac{56}{256}$ or 0.219

Or
$P(3)=\frac{8!}{3!5!} \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right) \cdot\left(\frac{1}{2}\right)$

How are these the same thing?

SHORTER NOTATION

$$
\times P(3)=\frac{8!}{3!5!} \cdot\left(\frac{1}{2}\right)^{3} \cdot\left(\frac{1}{2}\right)^{5}
$$

CHOOSE 8 PEOPLE TO BE IN A CLUB

* From a population of 1000 people, 600 girls \& 400 boys
$\times x=$ number of girls
* $P(x)$ is the probability of selecting x girls
* $n=$ number of trials
$+n=8$
$\times P(S)=$ probability of succes on one trial
$+P(S)=.6$
$\times P(F)=$ probability of failure on one trial
$+P(F)=.4$

CHOOSE 8 PEOPLE FROM A POPULATION

$\times P(3)$ is the probability of 3 girls
$\times P(3)=\frac{8!}{3!5!} \cdot(.6)^{3} \cdot(.4)^{5}$

* $P(4)=$
* $P(2)=$
$\times P(1)=$
$P(0)=$

PROBABILITY DISTRIBUTIONS AN ATHLETIC TEAM PLAYING A 3 GAME SERIES

Chances of winning Game 1 - 60\%
Game 2 - 75\%
Game 3-40\%
$P(w w w)=.18$
$P(\bar{w} \bar{w} \bar{w})=.06$
$P(w \bar{w} \bar{w})=.09$
$P(\bar{w} w \bar{w})=.18$
$P(\bar{w} \bar{w} w)=.04$
$P(\bar{w} w w)=.12$
$P(w \bar{w} w)=.06$
$P(w w \bar{w})=.27$

Number of mins	$P(x)$
0	.06
1	.31
2	.45
3	.18
lstis distribution a	
binomial distribution?	
Why?	

A TEST WITH 6 MULTIPLE CHOICE QUESTIONS

* Each question has one correct answer (a,b,c,d)
$\times P(S)=.25$
$\times P(F)=.75$

Number correct	$P(x)$
0	
1	
2	
3	
4	
5	
6	

A TEST WITH 6 MULTIPLE CHOICE QUESTIONS

* Each question has one correct answer (a,b,c,d)
$\times P(S)=.25$
$\times P(F)=.75$

Number correct	$P(x)$
0	0.178
1	0.356
2	0.297
3	0.132
4	0.033
5	0.004
6	0.0002

WEATHER

* Every day this week has a 30\% chance of rain
* $P(S)=.3$
* $P(F)=.7$
$\times P(4)$ is the probability that it will rain 4 of 7 days
* $P(4)=\frac{7!}{4!3!} \cdot(.3)^{4} \cdot(.7)^{3}$
$=0.097$

WEATHER

* Every day this week has a 30\% chance of rain
* $P(S)=.3$
$\times P(F)=.7$

Number days with rain $\quad P(x)$

0	
1	
2	
3	
4	0.097
5	
6	
7	

WEATHER

* Every day this week has a 30\% chance of rain
$\times P(S)=.3$ Number days with rain $\quad P(x)$
$\times P(F)=.7$

0	0.0824
1	0.247
2	0.318
3	0.227
4	0.097
5	0.025
6	0.0036
7	0.00022

MEAN, VARIANCE, \& STANDARD DEVIATION?

Number correct	$P(x)$
0	0.178
1	0.356
2	0.297
3	0.132
4	0.033
5	0.004
6	0.0002

Number days with rain	$P(x)$
0	0.0824
1	0.247
2	0.318
3	0.227
4	0.097
5	0.025
6	0.0036
7	0.00022

MEAN, VARIANCE, STTANDARD DEVIATION? NUMBER OF GIRLS IN 8 TRIALS POPULATION 1000, 600 GIRLS, 400 BOYS

Number of girls	$P(x)$
0	0.000655
1	0.00786
2	0.0413
3	0.124
4	0.232
5	0.279
6	0.209
7	0.0896
8	0.0168

5-3 HOMEWORK

* p218 \#13, 15-24, 35, 39

Chapter 5 Section 4

PARAMETERS FOR BINOMIAL DISTRIBUTION

Reminder

- Probability Distribution describes the Population
- mean and standard deviation are parameters, not statistics
- μ and σ

For Binomial Distributions

$$
\begin{gathered}
\mu=n p \\
\sigma^{2}=n p q \\
\sigma=\sqrt{n p q}
\end{gathered}
$$

$$
\begin{aligned}
& n=\text { the number of trials } \\
& p=\text { probability of succes } \\
& q=\text { probability of failure }
\end{aligned}
$$

Or

$$
\sigma=\sqrt{n p(1-p)}
$$

Green eyes 17\%

- The percentage of the population with green eyes is 17%
- In a room with 25 students, find the expected mean number with green eyes.

$$
\begin{gathered}
\mu=25 \cdot 0.17 \\
\mu=4.25
\end{gathered}
$$

Green eyes 17\%

- For the same population, find the standard deviation of students with green eyes

$$
\begin{gathered}
\sigma^{2}=25 \cdot 0.17 \cdot 0.83 \\
\sigma^{2}=3.53 \\
\sigma=1.88
\end{gathered}
$$

Green eyes 17\%

- Use the range rule of thumb to determine the minimum usual and maximum usual number of students with green eyes in a room with 25 students

$$
\begin{aligned}
& \mu+2 \sigma=8.01 \\
& \mu-2 \sigma=0.49
\end{aligned}
$$

Left Handers 10\%

- The percentage of the population that is left handed is 10\%
- In a room with 150 teachers, find the expected mean number left handed teachers.

$$
\begin{gathered}
\mu=150 \cdot 0.10 \\
\mu=15
\end{gathered}
$$

Left Handers 10\%

- For the same population, find the standard deviation of left handed teachers

$$
\begin{gathered}
\sigma^{2}=150 \cdot 0.1 \cdot 0.9 \\
\sigma^{2}=13.5 \\
\sigma=3.67
\end{gathered}
$$

Left Handers 10\%

- Use the range rule of thumb to determine the minimum usual and maximum usual number of left handed teachers in a room.

$$
\begin{gathered}
\mu+2 \sigma=22.34 \\
\mu-2 \sigma=7.66
\end{gathered}
$$

Gender Selection

- Some couples prefer to have baby girls because the mothers are carriers of a X-linked recessive disorder that can be inherited by their sons but none of their daughters

Ericsson Method

- The Ericsson method of gender selection has a 75% success rate. Suppose 100 couples use the Ericsson Method with a result that among 100 babies, there are 75 girls.
- Is the Ericsson method successful

Ericsson method

- Assume that the Ericsson method has no effect and boys and girls are equally likely.

$$
n=100 \quad p=0.5 \quad q=0.5
$$

$$
\mu=50
$$

$$
\sigma^{2}=25
$$

$$
\sigma=5
$$

$$
\begin{aligned}
& \mu+2 \sigma=60 \\
& \mu-2 \sigma=40
\end{aligned}
$$

Is 75 girls in 100 births unusual?

III 5-4 Homework

- p226 \# 5-7, 9, 11, 12, 15, 16, 20

