CORRELATION \& REGRESSION

CHAPTER 10

CORRELATION

- Data on each of two variables, where EACH VALUE OF ONE OF THE VARIABLES IS PaIRED WITH A VALUE OF THE Other VARIABLE.
- APPENDIX B DATA SET 14 (P754)

BIVARIATE DATA

Car weight (lbs)	Highway MPG
2560	34
2895	33
3320	28
3465	28
3835	26
4180	24

SCATTERPLOT

- USE THE STATISTICAL SOFTWARE ON YOUR CALCULATOR
- LIST EDITOR
- Stat Plot
- ZOOM STAT

TI-84 Plus

STAT PLOT F1 TELSET F2 FORMAT F3 CALC F4 TABLE F5

- CORRELATION EXISTS BETWEEN TWO VARIABLE WHEN THE VALUES OF ONE VARIABLE ARE ASSOCIATED WITH THE VAlUES OF THE OTHER VARIABLE.

CORRELATION

- Linear Correlation exists between TWO VARIABLES WHEN THERE IS A CORRELATION AND THE PLOTTED POINTS OF PAIRED DATA RESULT IN A PATTERN THAT CAN BE APPROXIMATED BY A STRAIGHT LINE.

SCATTERPLOTS

LINEAR CORRELATION

COEFFICIENT, r, MEASURES THE STRENGTH OF THE LINEAR RELATIONSHIP

$$
-1 \leq r \leq 1
$$

(a) Positive correlation: $r=0.851$

ActivStats

CS Scanned with
(c) No correlation: $r=0$

ActivStats

(b) Negative correlation: $r=-0.965$

Minitab

(d) Nonlinear relationship: $\boldsymbol{r}=\mathbf{- 0 . 0 8 7}$

MEASURING CORRELATION COEFFICIENT

- 3 METHODS
- SUMS OF THE SQUARES \& SQUARES OF THE SUMS
- Z-SCORES
- TECHNOLOGY

CORRELATION COEFFICIENT FORMULA 10-1 (P499)

$$
r=\frac{\left.n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)^{2}\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}
$$

$$
r=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{\sqrt{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}} \sqrt{n\left(\sum y^{2}\right)-\left(\sum y\right)^{2}}}
$$

	x (car weight)	y (MPG)	x^2	y^{\wedge}	xy
	2560	34	6553600	1156	87040
	2895	33	8381025	1089	95535
	3320	28	11022400	784	92960
	3465	28	12006225	784	97020
	3825	26	14630625	676	99450
	4180	24	17472400	576	100320
sums	20245	173	70066275	5065	572325

$$
\begin{aligned}
& r=\frac{6(572325)-(20245)(173)}{\sqrt{6(70066275)-(20245)^{2}} \sqrt{6(5065)-(173)^{2}}} \\
& r=-0.982
\end{aligned}
$$

CORRELATION COEFFICIENT FORMULA 10-2 (P499)

$$
r=\frac{\sum\left(z_{x} z_{y}\right)}{n-1}
$$

z_{x} DENOTES THE z SCORE FOR AN INDIVIDUAL SAMPLE VALUE x z_{y} DENOTES THE z SCORE FOR AN INDIVIDUAL SAMPLE VALUE y

	x (car weight)	zx	y (MPG)	zy	zx*zy
	2560	-1.3737361	34	1.318027211	-1.8106215
	2895	-0.8084936	33	1.06292517	-0.8593682
	3320	-0.0913949	28	-0.212585034	0.0194292
	3465	0.1532623	28	-0.212585034	-0.0325813
	3825	0.760687	26	-0.722789116	-0.5498163
	4180	1.3596753	24	-1.232993197	-1.6764704
mean	3374.16667		28.833333		-4.9094285
st dev	592.666		3.92		

$$
\begin{aligned}
& r=\frac{\sum\left(z_{x} z_{y}\right)}{n-1}, \\
& r=-4.909 \\
& r=-0.9818
\end{aligned}
$$

USING TECHNOLOGY

- Tl-84
- LIST EDITOR
- StAT
- CALC
- LINREGRESSION

\section*{| 1.1 | Lz | L3 | 1 |
| :---: | :---: | :---: | :---: |
| 1480 | 34 | -........... | |
| 885 | 3 | | |
| 34e | 目 | | |
| 4185 | \% | | |
| ----- | | | |

墭 TEXAS Instruments

CORRELATION FOR \lfloor ARGE DATA SETS

TII-84 Plus

this Texas Instruments

- APPENDIX B DATA SEI 14 (P754)
- What if we use all of the data in DATA SET 14
- $n=21$

CORRE ATION FOR LARGE DATA SETS

TIT-84 Plus
 青 Texas Instruments

FORMAT F3 CALC FA
TABLE F5
TABLE

SMAL V. \triangle ARGE DATA SETS

$$
\begin{aligned}
& n=6 \\
& r=-0.9818
\end{aligned}
$$

$$
\begin{array}{r}
n=21 \\
r=-0.7927
\end{array}
$$

SMALL.V. LARGE DATA SETS

- ARE WE SUGGESTING that THE LARGER DATA SET HAS A WEAKER LINEAR RELATIONSHIP?
- USE HYPOTHESIS TESTING TO TEST THE CLAIM OF A LINEAR CORRELATION BETWEEN TWO VARIABLES

HYPOTHESIS TESTING FOR LINEAR CORRELATION

- r - THE SAMPLE CORRELATION COEFFICIENT
- $\rho($ RHO $)$ - THE POPULATION CORRELATION COEFFICIENT
- $H_{0}: \rho=0$ (THERE IS NO LINEAR CORRELATION)
- $H_{A}: \rho \neq 0$ (THERE IS A LINEAR CORRELATION)

THE TEST STATISTIC

- $t=\frac{r}{\sqrt{\frac{1-r^{2}}{n-2}}}$
- Critical Value can be FOUND IN TABLE A-3
- $n-2$ DEGREES OF FREEDOM

HYPOTHESIS TEST

$$
\begin{aligned}
& H_{0}: \rho=0 \\
& H_{A}: \rho=0 \\
& r=-0.7927 \\
& n=21 \\
& d f=19 \\
& \alpha=0.05 \\
& t_{\alpha / 2}=2.093
\end{aligned}
$$

$$
t=-5.66
$$

ALTERNATIVE METHOD

- INSTEAD OF USING THE TEST STATISTIC; COMPARE THE SAMPLE CORRELATION COEFFICIENT TO THE CRItical Values of the Pearson CORRELATION COEFFICIENT r
- TAbLE A-6 ON PAGE 732
- $r=-0.7927$
- $n=21$

TO TEST $H_{0}: \rho=0$ AGAINST $H_{A}: \rho \neq 0$, REJECT H_{0} IF THE ABSOLUTE VALUE OF r IS GREATER THAN THE CRITICAL VALUE IN THE TABLE.

$$
\begin{aligned}
& H_{0}: \rho=0 \\
& H_{A}: \rho \neq 0 \\
& r=-0.7927 \\
& n=21
\end{aligned}
$$

$0.7927>0.444$
 $$
\text { reject } H_{0}
$$

Table A-6 Critical Values of the

n	$\alpha=.05$	$\alpha=.01$
4	.950	.990
5	.878	.959
6	.811	.917
7	.754	.875
8	.707	.834
9	.666	.798
10	.632	.765
11	.602	.735
12	.576	.708
13	.553	.684
14	.532	.661
15	.514	.541
16	.497	.823
17	.482	.606
18	.468	.590
19	.456	.575
20	.444	.561
25	.396	.505
30	.361	.463
35	.335	.430
40	.312	.402
45	.294	.378
50	.279	.361
60	.254	.330
70	.236	.305
80	230	20

HOMEOWRK

- P513 \# 13-16, 24, 29

ADDIIONA THINES ABOUI CORRFAIION

PROPERTIES OF r r

- The value of ris always: between -1 AND 11 INCLUSIVE
- THE VALUE OF r IS NOT AFFECTED BY THE CHOICE OF X:OR:Y.
- r ONLY MEASURES THE STRENGTH OF A LINEAR RELATIONSHIP
- r IS VERY SENSITIVE TO OUTLIERS

COMMONERRORS

- CORRELATIONDOES NOT MEAN GAUSATION
- ERRRORS ARISE WHEN DATA IS BASED ON: AVERAGES OR RATES
- r IS ONLY A TEST FOR LINEAR CORRELATION. SUST BECAUSE PAIRED DATA ARE NOT RELATED LINEARLY DOES NOT MEAN THAT THEY AREN'T RELATED IN SOME OTHER WAY.

r^{2} THEPROPORTION OF VARIATION

- $r=-0.7 .927$
- $r^{2}=0.6284$
- THIS MEANS THAT 62.84% OF THE VARIATION IN THE MPG CAN BE EXPLAINED BY THE LINEAR RELATIONSHIP

Linear Regression
 10-3

Regression line

OThe straight line that "best" fits a set of bivariate data
$\hat{y}=b_{0}+b_{1} x$
O x - predictor variable, independent variable
O \hat{y} - response variable, or dependent variable
O b_{0} - y-intercept
O b_{1} - slope

Linear Regression

OUse the linear regression function in the calculator to find the equation for the line of best fit

Requirement check

O Data is assumed to be simple random sample
O A scatterplot suggests a linear pattern
OThere is a linear correlation
OThere are no outliers

scaitierplots

TII-84 Plus

気俍 Texas Instruments

STAT PLOT F1 TBLSET F2 FORMAT F3 CALC F4 TABLE F5

Linear regression

O Use three significant digits
$\mathrm{O} \hat{y}=50.4-0.006 x$

Storing the regression equation

Making predictions

$$
\hat{y}=50.4-0.006 x
$$

O Find the expected Highway Fuel efficiency for a car weighing 5000 lbs .
O Find the fuel efficiency of the Hummer H2 weighing 6,400 lbs
O Find the fuel efficiency of the Smart Car weighing 1,500 lbs

O How much should a car weight to get 60 MPG ? ?

What if there is no linear correlation!?

OThen the value of \hat{y} is assumed to be \bar{y} for any predictor value of x
OWhy?
OBecause \bar{y} is the expected value of \hat{y}

Homeowrk

OP529 \#13-16, 24, 29

