CORRELATION & REGRESSION

CHAPTER 10

CORRELATION

10-2

BIVARIATE DATA

- DATA ON EACH OF TWO VARIABLES, WHERE EACH VALUE OF ONE OF THE VARIABLES IS PAIRED WITH A VALUE OF THE OTHER VARIABLE.
- APPENDIX B DATA SET 14 (P754)

Car weight (lbs)	Highway MPG
2560	34
2895	33
3320	28
3465	28
3835	26
4180	24

SCATTERPLOT

- USE THE STATISTICAL SOFTWARE
 ON YOUR CALCULATOR
- LIST EDITOR
- STAT PLOT
- ZOOM STAT

CORRELATION

- **CORRELATION** EXISTS BETWEEN TWO VARIABLE WHEN THE VALUES OF ONE VARIABLE ARE ASSOCIATED WITH THE VALUES OF THE OTHER VARIABLE.
- LINEAR CORRELATION EXISTS BETWEEN TWO VARIABLES WHEN THERE IS A CORRELATION AND THE PLOTTED POINTS OF PAIRED DATA RESULT IN A PATTERN THAT CAN BE APPROXIMATED BY A STRAIGHT LINE.

SCATTERPLOTS LINEAR CORRELATION COEFFICIENT, r, MEASURES THE STRENGTH OF THE LINEAR RELATIONSHIP

 $-1 \le r \le 1$

MEASURING CORRELATION COEFFICIENT

• 3 METHODS

• SUMS OF THE SQUARES & SQUARES OF THE SUMS

• Z-SCORES

• TECHNOLOGY

CORRELATION COEFFICIENT FORMULA 10-1 (P499)

 $n(\sum xy) - (\sum x)(\sum y)$ $\sqrt{n(\sum x^2) - (\sum x)^2} \sqrt{n(\sum y^2) - (\sum y)^2}$

$$r = \frac{n(\sum xy) - (\sum x)(\sum y)}{\sqrt{n(\sum x^2) - (\sum x)^2}\sqrt{n(\sum y^2) - (\sum y)^2}}$$

6(572325) - (20245)(173)

 $= \frac{1}{\sqrt{6(70066275) - (20245)^2}} \sqrt{6(5065) - (173)^2}$

	x (car weight)	y (MPG)	x^2	y^2	ху
	2560	34	6553600	1156	87040
	2895	33	8381025	1089	95535
	3320	28	11022400	784	92960
	3465	28	12006225	784	97020
	3825	26	14630625	676	99450
	4180	24	17472400	576	100320
sums	20245	173	70066275	5065	572325

r = -0.982

CORRELATION COEFFICIENT FORMULA 10-2 (P499)

 $r = \frac{\sum(z_x z_y)}{n-1}$

 z_x denotes the z score for an individual sample value x z_y denotes the z score for an individual sample value y

 $r = \frac{\sum (z_x z_y)}{n-1}$ $r = \frac{-4.909}{5}$

	x (car weight)	zx	y (MPG)	zy	zx*zy
	2560	-1.3737361	34	1.318027211	-1.8106215
	2895	-0.8084936	33	1.06292517	-0.8593682
	3320	-0.0913949	28	-0.212585034	0.0194292
	3465	0.1532623	28	-0.212585034	-0.0325813
	3825	0.760687	26	-0.722789116	-0.5498163
	4180	1.3596753	24	-1.232993197	-1.6764704
mean	3374.16667		28.833333		-4.9094285
st dev	592.666		3.92		

r = -0.9818

USING TECHNOLOGY

- TI-84
- LIST EDITOR
- Stat
 - CALC
 - LINREGRESSION

TI-84 Plus

CORRELATION FOR LARGE DATA SETS

- APPENDIX B DATA SET 14 (P754)
- What if we use all of the data in data set 14
- *n* = 21

TI-84 Plus Texas Instruments

CORRELATION FOR LARGE DATA SETS

SMALL V. LARGE DATA SETS

n = 21r = -0.7927

SMALL V. LARGE DATA SETS

- Are we suggesting that the larger data set has a weaker Linear relationship?
- Use hypothesis testing to test the claim of a linear correlation between two variables

HYPOTHESIS TESTING FOR LINEAR CORRELATION

- r The sample correlation coefficient
- ρ (RHO) The population correlation coefficient
- $H_0: \rho = 0$ (there is no linear correlation)
- H_A : $\rho \neq 0$ (THERE IS A LINEAR CORRELATION)

THE TEST STATISTIC

CRITICAL VALUE CAN BE FOUND IN TABLE A-3
n-2 degrees of freedom

HYPOTHESIS TEST

 $H_0: \rho = 0$ $H_A: \rho \neq 0$ r = -0.7927n = 21df = 19 $\alpha = 0.05$ $t_{\alpha/2} = 2.093$

$$=\frac{r}{\sqrt{\frac{1-r^2}{n-2}}}$$

t

t =

r

$$= \frac{-0.7927}{\sqrt{\frac{1 - (-0.7927)^2}{21 - 2}}}$$

t = -5.66

ALTERNATIVE METHOD

- INSTEAD OF USING THE TEST STATISTIC, COMPARE THE SAMPLE CORRELATION COEFFICIENT TO THE CRITICAL VALUES OF THE PEARSON CORRELATION COEFFICIENT *r*
- TABLE A-6 ON PAGE 732
- r = -0.7927

To test $H_0: \rho = 0$ against $H_A: \rho \neq 0$, reject H_0 if the absolute value of r is greater than the critical value in the table.

• *n* = 21

. . .

12-52

. . 31.

161

 $H_0: \rho = 0$ $H_A: \rho \neq 0$

r = -0.7927n = 21

> 0.7927 > 0.444 $reject H_0$

in a se	Coefficie	ent r
n	$\alpha = .05$	$\alpha = .0$
4	.950	.990
5	.878	.959
6	.811	.917
. 7	.754	.875
8	.707	.834
.9	.666	.798
10	.632	.765
11	.602	° .735
12	.576	.708
13	.553	.684
14	.532	.661
15	.514	.641
16	.497	.823
17	.482	.606
18	.468	.590
19	.456	.575
20	.444	.561
25	.396	.505
30	.361	.463
35	.335	.430
40	.312	.402
45	.294	.378
50	.279	.361
60	.254	.330
70	.236	.305
80	000	C Ob Bro Louis

5

a mandatak.

1947 22223

Ne

984 1710

HOMEOWRK

• P513 #13-16, 24, 29

ADDITIONAL THINGS ABOUT CORRELATION

PROPERTIES OF r

- The value of r is always between -1 and 1 inclusive
- The value of r is not affected by the choice of x or y
- r only measures the strength of a linear relationship
- r is very sensitive to outliers

COMMON ERRORS

- CORRELATION DOES NOT MEAN CAUSATION
- ERRORS ARISE WHEN DATA IS BASED ON AVERAGES OR RATES
- *r* is only a test for linear Correlation. Just because paired data are not related linearly does not mean that they aren't related in some Other way.

r^2 THE PROPORTION OF VARIATION

r = -0.7927
r² = 0.6284
This means that 62.84% of the variation in the MPG can be explained by the linear relationship

Linear Regression

Regression line

The straight line that "best" fits a set of bivariate data
\$\hat{y} = b_0 + b_1 x\$
\$x\$ - predictor variable, independent variable
\$\hat{y}\$ - response variable, or dependent variable
\$b_0\$ - y-intercept
\$b_1\$ - slope

Linear Regression

Ouse the linear regression function in the calculator to find the equation for the line of best fit

Requirement check

• Data is assumed to be simple random sample

• A scatterplot suggests a linear pattern

OThere is a linear correlation OThere are no outliers

scatterplots

Linear regression

• Use three significant digits • $\hat{y} = 50.4 - 0.006x$

Storing the regression equation

Making predictions

 $\hat{y} = 50.4 - 0.006x$

- Find the expected Highway Fuel efficiency for a car weighing 5000 lbs.
- Find the fuel efficiency of the Hummer H2 weighing 6,400 lbs
- Find the fuel efficiency of the Smart Car weighing 1,500 lbs

• How much should a car weight to get 60 MPG??

What if there is no linear correlation!?

Other the value of \hat{y} is assumed to be \bar{y} for any predictor value of x

OWhy?

OBecause \bar{y} is the expected value of \hat{y}

Homeowrk

OP529 #13-16, 24, 29